# A Promising MoO<sub>x</sub>-based Catalyst for *n*-Heptane Isomerization

Song Hai CHAI, Xin Ping WANG\*, Ying Jun WANG, Tian Xi CAI

State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012

**Abstract:** The SiO<sub>2</sub> and  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> supported MoO<sub>x</sub> catalyst and a MoO<sub>x</sub>-SiO<sub>2</sub> catalyst have been studied in a conventional fixed-bed flow reactor for *n*-alkanes isomerization. It is shown that the MoO<sub>x</sub>-SiO<sub>2</sub> catalyst with SiO<sub>2</sub> framework, in which the bulk MoO<sub>x</sub> phase is large enough to form typical mesoporous structure, is promising in terms of its advantages of both improved mechanical strength and high catalytic properties over the supported MoO<sub>x</sub> and bulk MoO<sub>x</sub> catalyst.

Keywords: n-Heptane isomerization, molybdenum oxides, SiO<sub>2</sub>, mesopore, MoO<sub>x</sub>-based.

The increasing demand for higher-octane gasoline and the regulations limiting the amount of aromatics in the fuel motivate the interest in catalytic isomerization of *n*-alkanes. In the last ten years, transition metal oxides or oxycarbides based on molybdenum or tungstate have attracted much attention due to their high activity and isomerization selectivity compared to the conventional bifunctional supported platinum catalyst and high resistance to sulphur and nitrogen catalyst poisons<sup>1-5</sup>. Matsuda *et al*<sup>4</sup> have shown that bulk MoO<sub>x</sub> catalyst obtained from H<sub>2</sub> partial reduction of MoO<sub>3</sub> at 623 K possesses a higher activity and selectivity for *n*-heptane isomerization compared with the 0.5 wt%Pt/USY bifunctional catalyst. In our previous work, it has been shown that apparent activated energy of 49.3 kJ/mol for *n*-heptane isomerization on bulk  $MoO_x$ catalyst is much lower than that over conventional bifunctional catalyst <sup>6</sup>. The studied  $MoO_x$  catalyst is very loose, while the high mechanical strength of the catalyst is required for large catalyst beds used in industry. Therefore, the aim of our work is trying to find a way to improve the mechanical strength of the catalyst, keeping its catalytic activity for *n*-heptane isomerization. For this purpose, the catalysts obtained by supporting  $MoO_x$  on some carriers or adding some inorganic material into  $MoO_x$  to form the framework have been studied.

## Experimental

The  $MoO_3/SiO_2$  or  $MoO_3/\gamma$ -Al<sub>2</sub>O<sub>3</sub> supported catalyst precursor was obtained by the conventional incipient wetness impregnation method. And the  $MoO_3$ -SiO<sub>2</sub> catalyst precursor with SiO<sub>2</sub> as the framework was prepared by the following steps:  $MoO_3$ 

<sup>\*</sup>E-mail: wangxp.wuhua@263.net

## Song Hai CHAI et al.

powder was mixed with silica sol, dried in air at 393 K, and then crushed to 60~80 mesh. Both types of the catalysts were finally activated in situ at 623 K in H<sub>2</sub> flow of 120 mL/min for 6 h, and the reaction was carried out under atmosphere pressure in a conventional fixed-bed flow reactor according to the details described in our previous work<sup>6-7</sup>. To study the interaction between the support and MoO<sub>3</sub>, which has been considered to be unfavorable to the catalytic activity, the specific activity of per gram of  $MoO_3$  of  $r_m$  was compared, and different amount of the catalyst was used in order to minimize influence of conversion of n-heptane on the  $r_m$  results. The charged amount of the catalysts precursor was 0.88 cm<sup>3</sup> for the  $MoO_x/SiO_2$  or  $MoO_x/\gamma$ -Al<sub>2</sub>O<sub>3</sub> catalyst and 0.27 g for  $MoO_x$ -SiO<sub>2</sub> catalyst (0.28 cm<sup>3</sup>) with the same  $MoO_3$  content (0.15 g) as bulk  $MoO_x$  catalyst. Crystalline phase of the catalysts was characterized by a Riguka D/max 2400 X-ray diffractometer using Cu-Ka radiation under 40 kV and 100 mA. The pore size distribution of the catalysts was measured on Micrometritics ASAP-2000 adsorption analyzer. The sample for the measurement was obtained as follows: after being reduced by H<sub>2</sub>, the catalyst sample was purged and cooling to room temperature in pure N<sub>2</sub>, and then passivated for 3 h with 0.5 % O<sub>2</sub> in N<sub>2</sub> to avoid a strong bulk oxidation.

#### **Results and Discussion**

Table 1<sup>a</sup> Catalytic performance of the different types of MoO<sub>x</sub>-based catalysts

| Catalyst precursor                                          | $C_{n-C7}^{b}$ | Siso   | $r_{ m m}$                                    | $r_{ m v}$                                            |
|-------------------------------------------------------------|----------------|--------|-----------------------------------------------|-------------------------------------------------------|
|                                                             | (mol%)         | (mol%) | $(\text{mmol-}n\text{-}C_7/\text{h/g-MoO}_3)$ | $(\text{mmol-}n\text{-}C_7/\text{h/cm}^3\text{-cat})$ |
| Bulk MoO <sub>3</sub>                                       | 48             | 93     | 44                                            | 82                                                    |
| 22.4 wt% MoO <sub>3</sub> /γ-Al <sub>2</sub> O <sub>3</sub> | 12             | 73     | 9.5                                           | 1.9                                                   |
| 13.1 wt% MoO <sub>3</sub> /SiO <sub>2</sub>                 | 9              | 98     | 24                                            | 1.4                                                   |
| 20.9 wt% MoO3/SiO2                                          | 20             | 96     | 30                                            | 3.1                                                   |
| 34.5 wt% MoO3/SiO2                                          | 37             | 95     | 29                                            | 6.0                                                   |
| 55.4 wt% MoO3-SiO2                                          | 48             | 94     | 44                                            | 24                                                    |

a: The result given in Table 1 was taken after 1 h of run.

b:  $C_{n-C7}$  and  $S_{iso}$  mean conversion of *n*-heptane and isomerization selectivity, respectively.

Reaction conditions: reaction temperature=573 K, H<sub>2</sub>=120 mL/min and H<sub>2</sub>/*n*-C<sub>7</sub>=23.

The comparison of the catalytic activity of the different types of  $MoO_x$ -based catalysts for *n*-heptane isomerization was shown in **Table 1**. The  $MoO_x/\gamma$ -Al<sub>2</sub>O<sub>3</sub> catalyst possessed a poor  $r_m$  and isomerization selectivity compared with bulk  $MoO_x$  catalyst and the  $MoO_x/SiO_2$  catalyst. These results can be explained well from the interaction between the support and the  $MoO_3$ . It is widely known that the strong metal-support interaction between the  $MoO_3$  and the alumina support surface made  $MoO_3$  to be hardly reduced to the active state<sup>8</sup>. And the lower selectivity to isomerization of the  $MoO_x/\gamma$ -Al<sub>2</sub>O<sub>3</sub> catalyst may result from the naked alumina surface. It confirmed that  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> is not a proper support.

Over the  $MoO_x/SiO_2$  catalyst, the reaction specific activity of per g-MoO<sub>3</sub>,  $r_m$ , increased when the MoO<sub>3</sub> loading increased from 13.1 wt% to 20.9 wt% in the precursor and then kept almost constant as further increasing the loading, while the isomerization selectivity remained as high as that of unsupported bulk MoO<sub>x</sub> catalyst. As the

### 750 A Promising MoOx-based Catalyst for *n*-Heptane Isomerization

 $MoO_x/SiO_2$  catalyst with higher MoO\_3 loading has a larger of  $r_{m}$ , it can be suggested that the MoO\_x site dispersed on the SiO\_2 surface is less active than bulk phase of MoO\_x in the SiO\_2 pores though the interaction between the MoO\_3 and SiO\_2 is weaker<sup>9</sup>. This suggestion is also supported by the XRD results shown in **Figure 1**, that the intensity of the diffraction lines at 20=38.1° and 44.6° attributed to MoO\_xH<sub>y</sub> phase, as well as those at 20=26.1°, 37.0° and 53.5° attributed to MoO\_2 phase<sup>10-12</sup> became stronger as MoO\_3 loading in the MoO\_x/SiO\_2 catalyst precursor increased from 13.1 wt% to 34.5 wt%.





The corresponding precursors are (A) bulk MoO<sub>3</sub>; (B) 55.4 wt% MoO<sub>3</sub>-SiO<sub>2</sub>; (C) 34.5 wt% MoO<sub>3</sub>/SiO<sub>2</sub>; (D) 13.1 wt% MoO<sub>3</sub>/SiO<sub>2</sub>; (E) SiO<sub>2</sub>.

To obtain a catalyst with both enough mechanical strength and more proportional bulk phase of  $MoO_x$ , we studied the  $MoO_x$ -SiO<sub>2</sub> catalyst, in which SiO<sub>2</sub> acted as the framework. As shown in **Figure 1**, the XRD pattern of the  $MoO_x$ -SiO<sub>2</sub> catalyst was similar to that of bulk  $MoO_x$  catalyst, indicating that it contained more bulk phase of  $MoO_x$ . Furthermore, the framework structure was well characterized by the pore-size distribution curves shown in **Figure 2**. The  $MoO_x$ -SiO<sub>2</sub> catalyst possessed two types of pores, one type with pore diameter of about 4 nm and the other with 10 nm. By comparing the pore-size distribution curves with those of bulk  $MoO_x$  catalyst and the SiO<sub>2</sub> support, it is reasonable to attribute the pores with the diameter of 4 nm to that formed by the bulk  $MoO_x$ -SiO<sub>2</sub> catalyst. From the pore-size distribution curves, it could be considered that the  $MoO_x$ -SiO<sub>2</sub> catalyst had the framework of SiO<sub>2</sub>, in which the bulk  $MoO_x$  phase could be large enough to form own typical pore structure.

Interestingly, the  $MoO_x$ -SiO<sub>2</sub> catalyst exhibited an almost unchanged specific activity of  $r_m$  compared with that of bulk  $MoO_x$  catalyst as shown in **Table 1**.



Figure 2 Pore-size distribution curves for  $MoO_x$ -SiO<sub>2</sub>,  $MoO_x$ /SiO<sub>2</sub> and bulk  $MoO_x$  catalysts

Pore diameter (A) The corresponding precursors are (A) 55.4 wt% MoO<sub>3</sub>-SiO<sub>2</sub>; (B) SiO<sub>2</sub>; (C) bulk MoO<sub>3</sub>.

By comparing the different catalysts listed in **Table 1** with the reaction specific activity of per cm<sup>3</sup>-catalyst,  $r_v$ , it can been seen that the activity of these catalysts is in the order: bulk MoO<sub>x</sub> > MoO<sub>x</sub>-SiO<sub>2</sub> > MoO<sub>x</sub>/SiO<sub>2</sub> > MoO<sub>x</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>. However, from practical application standpoint, MoO<sub>x</sub>-SiO<sub>2</sub> catalyst is very promising in terms of its advantages of both improved mechanical strength and high catalytic properties over the bulk MoO<sub>x</sub> catalyst and supported MoO<sub>x</sub> catalyst.

### References

- 1. E. Iglesia, F. H. Ribeiro, M. Boudart, J. E. Baumgartner, Catal. Today, 1992, 15 (2), 307.
- 2. E. A. Blekkan, C. Pham-Huu, M. J. Ledoux, J. Guille, *Ind. Eng. Chem. Res.*, **1994**, *33* (7), 1657.
- 3. A. P. E. York, C. Pham-Huu, P. D. Gallo, M. J. Ledoux, Catal. Today, 1997, 35 (1-2), 51.
- 4. T. Matsuda, H. Shiro, H. Sakagami, N. Takahashi, *Catal.Lett.*, **1997**, 47 (2), 99.
- 5. A. Kartrib, D. Mey, G. Maire, Catal. Today, 2001, 65 (2-4), 179.
- 6. Y. J. Wang, X. P. Wang, S. H. Chai, T. X. Cai, React. Kinet. Catal. Lett., 2002, 77 (1), 125
- 7. Y. J. Wang, X. P. Wang, T. X. Cai, Chin. Chem. Lett., 2002, 13 (2), 177.
- 8. C. Pham-Huu, P. D. Gallo, E. Peschiera, M. J. Ledoux, *Appl. Catal. A General*, **1995**, *132* (1), 77.
- 9. Y. V. Plyuto, I. V. Babich, I. V. Plyuto, A. D. Van Langeveld, J. A. Moulijn, *Appl. Surf. Sci.*, **1997**, *119* (1-2), 11.
- T. Matsuda, Y. Hirata, H. Itoh, H. Sakagami, N. Takahashi, *Micropor. Mesopror. Mater.*, 2001, 42 (2-3), 337.
- 11. T. Matsuda, A. Hanai, F. Uchijima, H. Sakagami, N. Takahashi, *Micropor. Mesopror. Mater.*, **2002**, *51* (2), 155.
- P. Delporte, F. Meunier, C. Pham-Huu, P. Vennegues, M. J. Ledoux, J. Guille, *Catal. Today*, 1995, 23 (3), 251.

Received 22 July, 2002 Revised 7 March, 2003